Электрокардиография высокого разрешения

Электрокардиография высокого разрешения

Изоэлектрическая линия это

При спектральном анализе (frequency–domain) оцениваются изменения амплитудно–частотных характеристик определенного участка кардиосигнала. Наиболее часто для спектрального анализа используют метод БПФ, с помощью которого сигнал можно разложить на составляющие его колебания различной частоты и амплитуды. Основное требование при использовании БПФ — сигнал должен быть периодическим и непрерывным. Для удовлетворения этого условия применяют функцию “окна”: выделяют интервал ЭКГ–сигнала (конечная часть комплекса QRS и начало сегмента ST), в котором при временном анализе определяют признаки ППЖ. Одновременно допускается, что это выбранное “окно” ЭКГ–сигнала постоянно повторяется без прерывания другими зубцами (Р,T), комплексом QRS и изоэлектрическим интервалом Т–Р [24, 25, 26].

Выбор длины времени “окна” является компромиссом между точностью локализации искомого низкоамплитудного сигнала в пределах комплекса QRS (что означает выбор короткого периода) и сохранением спектрального разрешения (способности различать спектральные составляющие двух сигналов и более), так как с уменьшением ширины “окна” ухудшается спектральное разрешение. То есть, одно требует большей длины анализируемого сегмента, а второе — коротких сегментов. Спектральная плотность мощности в этом интервале вычисляется по интегральным полосам частот, проводится анализ их значений и соотношений (доля высоких и низких частот). Эффект среднего значения интервала ЭКГ (влияние прямых электрических компонентов) на спектр минимален в частотах выше 10 Гц при анализе интервала длиной около 150 мс.

На точность измерения энергии в выбранном диапазоне частот влияет выявление спектральной “утечки”. Энергия исследуемой частотной полосы “утекает” частично в смежные частоты, тем самым уменьшая точность ее измерения. “Утечка” происходит из–за того, что вопреки требованию БФА к сигналу быть непрерывным, анализу подвергается лишь “временное окно” (т.е. часть комплекса QRS). По степени улучшения динамического диапазона функции “окна” располагаются в следующем порядке: Блэкмана–Харриса, Хэмминга, Хэннинга, прямоугольное “окно”. Спектральное разрешение зависит от функции “окна” в обратном указанном выше порядке.

Спорным остается вопрос о необходимости исключения влияния постоянных электрических составляющих (ПЭС) в сигнале ЭКГ. Среднее значение ПЭС сегмента ST нарушает спектр при обработке функцией “окна”, так как в большинстве случаев сегмент ST имеет амплитуду отнюдь не нулевого значения. Из–за линейности БПФ эта амплитуда будет определять не нулевое значение для частотных составляющих около 0 Гц, что оказывает влияние на результаты спектрального анализа. Иногда такая амплитуда настолько велика, что перекрывает другие компоненты ЭКГ–сигнала. Одни исследователи этот фактор не учитывали, другие, для устранения этой погрешности БПФ при анализе ППЖ, исключали среднюю амплитуду обработанного “окном” сигнала ЭКГ. Однако при этом терялись характерные для сегмента ST изменения (смещение от изоэлектрической линии). Это вынудило некоторых исследователей полностью не устранять вклад ПЭС, а свести их влияние к минимуму, т.е. исключить частоты ниже 10 Гц. Влияние среднего значения интервала ЭКГ на спектр является минимальным при частотах более 10 Гц в случае анализа интервала продолжительностью около 150 мс. Таким образом, метод БПФ, дающий возможность оценивать энергию спектра частотных составляющих ЭКГ сигнала, имеет ряд недостатков:

  1. наличие спектральной “утечки” при анализе коротких интервалов и, как следствие этого, необходимость использования математических функций “окон”, которые сами ослабляют сигнал в интересующей частной области;
  2. чувствительность БПФ к изменению длины анализируемого сегмента;
  3. обратная связь между частотным и временным разрешением, из–за которой возникает трудность точной локализации ППЖ;
  4. функция БПФ предполагает устойчивость частотных составляющих исследуемого сигнала, что в действительности не совсем так.

В тоже время этот подход позволяет решить проблемы, возникающие при использовании метода временного анализа (метод Симсона): на его результаты не влияют нарушения проведения по ножкам пучка Гиса, локализация инфаркта миокарда. Кроме того, метод не требует применения фильтров.

Спектрально–временное картирование (СВК), или спектральное картирование множественных сегментов, одним из первых применил Haberl [27]. Принцип метода заключается в вычислении спектра движущегося во временной оси “окна” в конечной части QRS и сегменте ST . По результатам расчетов строится трехмерный график частоты, времени и амплитуды. Вычисляется спектральная энергия при проведении БПФ 25 сегментов длиной 80 мс, смещенных на 3 мс друг от друга. В ранних работах по данной методике первый сегмент начинался на 52–й мс после окончания QRS, а последний — в 20 мс до него. Определялась степень корреляции между значениями частотного спектра 2–25 и первого сегмента. Коэффициенты корреляции указывали на степень схожести спектральных карт: нулевой коэффициент — две карты непохожи, единица при идентичности карт. Вычислялся фактор нормальности (ФН) — соотношение между средним значением коэффициентов корреляции пяти последних сегментов и остальных, выраженное в процентах. Критерием наличия ППЖ являлось низкое значение ФН (менее 30%) в любом из X, Y, Z и в векторно суммированном отведениях.

Важным достоинством метода является возможность выделения сигналов ППЖ от шумовых по их типичной спектральной картине. Следовательно, при использовании этого метода имеется вероятность выявления ППЖ даже в единичных сердечных сокращениях. Клинические исследования по выявлению больных с желудочковыми тахиаритмиями с использованием СВК показали хорошие результаты [27], в том числе у больных с нарушениями внутрижелудочкового проведения. Однако, по данным разных авторов, показатели чувствительности и специфичности колеблются в широких пределах (от 25–75% и 60–89%) у больных с постинфарктным кардиосклерозом без нарушений внутрижелудочкового проведения [27, 28]. У больных с нарушением внутрижелудочкового проведения метод СВК был более чувствительным (93%), но менее специфичным (16%).

В последующем при СВК была использована авторегрессионая модель — метод адаптивного определения частот. В основе метода лежит оценка спектральной мощности путем выявления автокорреляционных коэффициентов временного сигнала. Спорным вопросом при использовании авторегрессионых моделей является определение оптимального количества коэффициентов, необходимого для адекватной оценки спектра. Если количество коэффициентов будет слишком мало, некоторые компоненты сигнала могут остаться вне анализа. Если оно будетслишком большим — появляются артефактные пики. Оптимальное количество коэффициентов выбирается субъективно, произвольно. Так же, как и при СВК с использованием БПФ, вычисляется фактор нормальности, но уже путем деления не средних коэффициентов корреляции сегментов внутри комплекса QRS и сегмента ST, а абсолютной спектральной энергии указанных сегментов. Предполагается, что метод не требует использования математической функции “окна”, имеет минимум спектральной “утечки”, частотное разрешение высокое даже при таком коротком сегменте, как 25 мс. Метод позволяет точно определить локализацию ППЖ во временном интервале ЭКГ. К недостаткам метода следует отнести возможность влияния различных стационарных шумов.

Другой метод выявления признаков ППЖ — это спектрально–турбулентный анализ (СТА), который базируется на данных БПФ электрокардиографического сигнала между точками, расположенными за 25 мс до конца QRS и 125 мс после. Оценивают частично перекрывающиеся сегменты длительностью 24 мс, которые обрабатываются с шагом 2 мс. Далее анализируют 4 параметра: корреляцию между сегментами, стандартное отклонение, отношение корреляции небольших сегментов и спектральную энтропию. Оценивают баллы от 0 до 4, патологией при СТА считается оценка от 3 до 4. Пример работы СТА, который используется в программном обеспечении фирмы Del Mar Avionics, приведен на рис. 14а (норма) и рис. 14б (патология)

В нашей программе, написанной В.В.Ковтун, применен метод СВК, основанный на использовании множественных узкополосовых фильтров. Программа позволяет проводить спектральный анализ различных участков кардиоцикла (зубцы P и T, комплекс QRS) с выделением временных, амплитудных и частотных характеристик любого выбранного в нем интервала. Одновременно анализируются показатели общей спектральной плотности, интегральной спектральной плотности любого исследуемого участка. Применение этой программы позволяет детально анализировать амплитудные, частотные и временные характеристики спектра исследуемого фрагмента ЭКГ–сигнала. На основании полученных результатов строится двухмерный и трехмерный график частоты, времени и амплитуды частотных составляющих ЭКГ сигнала, который в общем виде представлен на рис. 15а и рис. 15б.

С помощью данного метода определяли следующие амплитудно–частотные характеристики спектра зубцов Р или Т, комплекса QRS:

  1. общую спектральную плотность — ОСП;
  2. содержание в ней высокочастотных — свыше 20 Гц (ВЧ) и низкочастотных — менее 20 Гц (НЧ) составляющих ЭКГ–сигнала (или 40 Гц — как точка разделения);
  3. отношение НЧ/ВЧ;
  4. выделяли 3 частотных диапазона: до 20 Гц, 20–70 Гц; свыше 70 Гц; в них оценивали амплитудные (А1, A2, A3), временные (Т1, T2, T3) и частотные параметры максимального пика (экстремума) (рис. 16).

На рис. 16 в правой верхней части представлены показатели ОСП, ВЧ и НЧ составляющих (с разграничением по 40 Гц); в левой части — двух– и трехмерное представление полученных амплитудных характеристик частного спектра QRS комплекса с разверткой по времени.

С помощью дополнительных функций в построенных спектрально–временных картах выполнялось автоматическое выделение локальных максимумов и графическое отображение распределения (паттернов) имеющихся максимумов (экстремумов) по частоте (F–режим) и по времени (Т–режим). Имелась также возможность последующей суммации сформированных карт распределения частотных экстремумов и их паттернов с целью выявления наибольшей встречаемости на протяжении QRS–комплекса или Р–зубца, а также распределение по диапазонам частот.

Возможности использования частотно–временного анализа с использованием модификации преобразования Wigner (имеющего определенные преимущества при анализе нестационарных процессов) при анализе комплекса QRS приведены в работе Novak P. и соавт. [29]. Авторы приводят данные обследования 11 здоровых лиц и 30 больных после перенесенного инфаркта миокарда. На рис. 17 и рис. 18 представлены типичные спектрально–временные карты у больного после перенесенного инфаркта миокарда с признаками ППЖ (рис. 17) и без признаков ППЖ (рис. 18) по данным традиционного временного анализа (метод Симсона). Авторы подчеркивают, что высокочастотные составляющие в комплексе QRS прослеживаются не только в конце (последние 40 мс), а на протяжении всего QRS–комплекса и в целом вся частотно–волновая структура имеет очевидные и существенные отличия.

В последние годы большое число работ посвящено использованию нового метода обработки ЭКГ–сигнала и представления амплитудно–частотных составляющих QRS–комплекса с оценкой поздних потенциалов желудочков, так называемого “wavelet transform” (пакета фильтров для частотно–волнового преобразования). Наиболее часто использующимся видом “wavelet” преобразования является Morlet’s wavelet, которая представляет собой новую концепцию wavelet корреляционных функций. Данное направление работ представляется черезвычайно интересным с учетом уже имеющихся данных о негомогенной деполяризации. Об этом свидетельствует наличие нарушений не только конечной части QRS–комплекса, проявляющееся наличием ППЖ, но и более сложных нарушений хода волны возбуждения в начале и середине QRS–комплекса. Этот метод имеет преимущества для выделения нестационарных характеристик изучаемого сигнала, что вероятно необходимо для исследования частотно–волновых составляющих кардиоцикла и отдельных его участков, в том числе без усреднения сигнала [30].

Как правило, анализу подвергается область от 40 до 100 Гц во временном интервале 25 мс до начала и 25 мс после окончания QRS комплекса. В ряде случаев используется мультипараметрический алгоритм, основанный на когерентном выявлении ряда локальных максимумов wavelet преобразования. Тестируются семь основных последовательностей “wavelet”: Morlet’s wavelet и шесть первых производных. Первая производная чаще дает неинформативный результат, но все последующие могут быть классифицированы. На рис. 19 представлены результаты анализа с использованием “wavelet” преобразования у здорового испытуемого и больного после перенесенного инфаркта миокарда (рис. 20). По данным Reinhardt и соавт., которые проанализировали результаты 769 случаев у больных перенесших инфаркт миокарда, комбинация “wavelet” корреляционной функции и параметров ППЖ при временном анализе повысило общую предсказывающую ценность с 52% до 72% при ИМ нижней локализации и с 64% до 76% при ИМ передней локализации [31].

Зубцы, сегменты и интервалы нормальной ЭКГ и схема их формирования

На рисунке 7 представлены два полных кардиоцикла. Для того чтобы перейти к рассмотрению основных зубцов и сегментов ЭКГ нужно разобраться с понятием изоэлектрической линии или линией нулевого потенциала. Изоэлектрической называется линия, регистрирующаяся либо при отсутствии разницы потенциалов между двумя исследуемыми точками, либо при одинаковом заряде в этих двух точках. В обоих случаях на ленте будет фиксироваться прямая, которую мы условно можем обозначить за ось X, по которой будут отмечаться временные интервалы (t, сек). По второй оси Y будет отмечаться вольтаж ЭКГ (ДЦ, мВ). Таким образом, ЭКГ — изменение разницы потенциалов сердца во времени.

Сердечный цикл (кардиоцикл) состоит из двух фаз — систолы и диастолы. Систола — фаза сердечного цикла, состоящая из последовательно протекающих сокращений миокарда предсердий и желудочков. Диастола — фаза сердечного цикла: расширение полостей сердца, связанное с расслаблением мускулатуры их стенок, во время которого полости сердца наполняются кровью. И систола, и диастола, имеют две составляющие — электрическую и механическую. Электрическая составляющая отражает процессы протекающие в проводящей системе сердца, а механическая — процессы, протекающие в сократительной системе.Отдельно следует отметить, что механический кардиоцикл, запаздывает от электрического, так как кардиомиоцитам, получившим электрический импульс от проводящей системы, нужно время для того чтобы сократиться. ЭКГ отражает только электрический кардиоцикл.

1) Зубец P — отражает процесс деполяризации обоих предсердий. Как было сказано ранее, предсердия возбуждаются практически одновременно, в результате чего на ЭКГ формируется лишь один зубец (в зависимости от отведения может быть как положительным, находится выше изоэлектрической линии, так и отрицательным – ниже изоэлектрической линии).

2) Сегмент P-Q(R) —время от конца деполяризации предсердий, до начала деполяризации желудочков. Кто был внимателен, отметит, что это есть не что иное, как физиологическая задержка импульса в АВ-узле. Как правило, данный сегмент лежит на изоэлектрической линии. (В скобках пишется зубец R,так как нередко, даже в состоянии нормы, зубец Q у многих людей может отсутствовать, в таком случае считается сегмент P-R —от конца зубца P до начала зубца R).

3) Интервал P-Q(R) —время от начала деполяризации предсердий, до начала деполяризации желудочков (характеризует скорость предсердной проводимости импульса).

4) Комплекс QRS —время от начала зубца Q до конца зубца S, характеризует время деполяризации желудочков. Зубец Q — характеризует возбуждение верхней трети межжелудочковой перегородки. Зубцы R и S характеризуют возбуждение верхушки сердца (Зубцы Q и S — всегда отрицательные, зубец R — всегда положительный).

5) Сегмент ST —характеризует время полного охвата желудочков возбуждением после возбуждения верхушки сердца. Как правило, лежит на изолинии.

6) Интервал Q-T –электрическая систола сердца. Зубец T характеризует реполяризацию желудочков (в зависимости от отведения может быть как положительным, так и отрицательным). Реполяризация предсердий на ЭКГ не находит своего отражения, так как по времени совпадает с деполяризацией желудочков, но поскольку несет в себе более низкую разность потенциалов, на ЭКГ мы видим именно деполяризацию желудочков.

7) Комплекс T-P.Как правило, лежит на изолинии и отражает электрическую диастолу сердца.

Физиологическое значение зубца U не определено, и в большинстве случаев, он не встречается.

Интервал R-R –характеризует время одного полного кардиоцикла, или время одного сердечного сокращения (следует отметить, что на ЭКГ у здорового человека интервалы P-P, Q-Q, R-R, S-S, T-T все будут равны между собой, но поскольку, зубец R, как правило, самый высокоамплитудный и легко различимый, для определения частоты пульса, либо времени кардиоцикла используют именно интервал R-R).

Также необходимо уметь рассчитывать амплитуды зубцов. Амплитудой зубца называется перпендикуляр, опущенный из вершины зубца на изоэлектрическую линию, для примера на рисунке показаны амплитуды зубцов R, S и Q — h1, h2, h3 соответственно. Запись ЭКГ, как правило, производится на миллиметровую бумагу, поэтому пересчитать амплитуду в единицах длины – не составит особого труда. Но для перевода длины в вольты, необходимо знать усиление кардиографа, для чего перед каждым записанным отведением должен подаваться калибровочный сигнал, о котором говорилось выше.

Читаем ЭКГ сердца

Электрокардиография (ЭКГ сердца) — метод графической регистрации электрических процессов, протекающих в сердце при его возбуждении. В основе метода лежит представление о том, что биотоки сердца имеют закономерное распределение на поверхности тела, и могут быть отведены, усилены и записаны в виде характерной кривой — электрокардиограммы.

Под электрокардиограммой подразумевается тест, который способен дать человеку полную информацию о работе его сердца. Довольно часто электрокардиограмму делают с физической нагрузкой. Это необходимо для того, чтобы дать полную оценку работе сердца в периоды активной жизнедеятельности человека.

Электрокардиограмма состоит из:

  • зубцов ЭКГ,
  • сегментов (расстояние между двумя зубцами)
  • интервалов (совокупность зубца ЭКГ и сегмента), отражающих процесс распространения волны возбуждения по сердцу.

Чтобы было понятнее, что называется зубцами, сегментами и интервалами электрокардиограммы, нужно изучить схему ниже.

На схеме представлен идеальный вид ЭКГ сердца. В реальности он может сильно отличаться от идеала. Например, при наличии мерцательной аритмии (фибрилляции предсердий) зубца P не будет вообще, а расстояние между R-зубцами будет сильно различаться.

Зубцы, сегменты и интервалы ЭКГ сердца

Зубец Р. Деполяризация предсердий регистрируется на ЭКГ в виде зубца Р. Восходящая часть зубца Р отражает деполяризацию правого предсердия, нисходящая — левого. На схеме: пп — возбуждение правого предсердия; лп — возбуждение левого предсердия, которые вместе и дают P-зубец.

Зубец Q — связан с возбуждением межжелудочковой перегородки. Он имеет малую амплитуду и является необязательным зубцом.

Зубец R — обусловлен деполяризацией желудочков.

Зубец S имеет малую амплитуду и нередко может отсутствовать.

Зубец Т. Отражает процесс реполяризации желудочков. Направление волн реполяризации противоположно направлению деполяризации и устремлено от эпикарда к эндокарду.

Зубец U. Непостоянный, иногда регистрируется после зубца Т. Происхождение зубца U неизвестно, а представления о его клиническом значении неопределенны.

Сегмент Р — Q. Это расстояние от конечной точки зубца Р до начала зубца Q. Сегмент Р — Q записывается в момент прохождения импульса по проводящей системе сердца, когда разность потенциалов очень мала, поэтому на ЭКГ регистрируется горизонтальная линия.

Интервал Р — Q. Это расстояние от начала зубца Р до начала зубца Q или R. Он соответствует времени прохождения импульса по предсердиям, АВ-узлу, пучку Гиса и его разветвлениям.

Комплекс QRS. Он отражает процесс деполяризации желудочков. Процесс возбуждения начинается с деполяризации преимущественно левой части межжелудочковой перегородки в средней ее трети. Далее возбуждение охватывает апикальную область правого и левого желудочков. Последним возбуждается основание желудочков.

Сегмент RS — Т. Соответствует периоду, когда оба желудочка полностью охвачены возбуждением. Разность потенциалов отсутствует и на ЭКГ сердца регистрируется изоэлектрическая линия.

Интервал Q — Т. Характеризует электрическую систолу желудочков.

Сегмент Т — Р. Соответствует диастолической фазе сердечного цикла.

При этом стандартные расположения (отведения) электродов от конечностей: первое (I) отведение (правая рука — ПР, левая рука — ЛР); второе (II) отведение (ПР и левая нога — ЛН) и третье (III) отведение (ЛР—ЛН).

Нормальная ЭКГ сердца

Зубцы нормальной электрокардиограммы (ЭKГ сердца) человека.

Обозначения зубцов Характеристика зубцов Диапазон длительности, с Диапазон амплитуды в I, II и III отведении, мм
P Отражает деполяризацию (возбуждение) обоих предсердий, в норме зубец положительный 0,07—0,11 0,5—2,0
Q Отражает начало деполяризации желудочков, отрицательный зубец (направлен вниз) 0,03 0,36—0,61
R Главный зубец деполяризации желудочков, положительный (направлен вверх) см. QRS 5,5—11,5
S Отражает окончание деполяризации обоих желудочков, отрицательный зубец 1,5—1,7
QRS Совокупность зубцов (Q, R, S), отражающих деполяризацию желудочков 0,06—0,10 0—3
T Отражает реполяризацию (угасание) обоих желудочков; зубец положительный в I, II, III, aVL, aVF и отрицательный — в aVR 0,12—0,28 1,2—3,0

При анализе ЭKГ сердца большое значение имеют временные интервалы между некоторыми зубцами (см. табл. Интервалы электрокардиограммы). Отклонение длительности этих интервалов за пределы нормы может свидетельствовать о нарушениях функции сердца.

Интервалы электрокардиограммы

Обозначение интервала Характеристика интервалов Длительность, с
P-Q От начала возбуждения предсердий (Р) до начала возбуждения желудочков (Q) 0,12—0,20
P-R От начала Р до начала R 0,18—0,20
Q-T (QRST) От начала Q до конца Т; соответствует деполяри- зации и реполяризации желудочков (электрическая систола) 0,38—0,55
S-T От конца S до начала T, отражает фазу полной депо- ляризации желудочков. В норме его отклонение (смещение) от изолинии не должно превышать 1 мм 0—0,15
R-R Длительность сердечного цикла (полный цикл работы сердца). В норме эти отрезки имеют почти одинаковую продолжительность
T-P Отражает состояние покоя миокарда (электрическая диастола). Этот сегмент следует принимать за уровень изоэлектрической линии в норме и патологии

Пройти кардиологическое обследование с получением ЭКГ сердца можно на кардиоуроке или на кардиотестировании в кардиошколе.

Читайте также:  Лучшее средство от прыщей
Ссылка на основную публикацию
Экзема у грудничков подробное описания и лечение
Экзема у детей: причины и лечение От экземы, проявляющейся в виде сыпи и покраснений кожного покрова, застраховаться невозможно. Она относится...
Шпаргалка ОРВИ у беременных
Простуда как признак беременности Простуда как ранний признак беременности Может ли простуда быть признаком беременности, или подобные недомогания никак не...
Шум в правом ухе без боли возможные причины и методы лечения
Почему появляется звон, шум в ушах, основные причины и лечение подобного дискомфорта Шум в ушах или ощущение каких-либо звуков в...
Экзистенциальная психология — это
Экзистенциальная психология – что такое экзистенциальный подход в психологии? Экзистенциальная психология изучает жизнь, бытие человека в его становлении и развитии,...
Adblock detector